SBU Logo CAS Logo

Dept. Logo
Ice-like Phonons in Liquid Water  
For more than 100 years, scientists have debated what the underlying molecular structure of water is, and the common view has been that H2O molecules are either "water-like" or "ice-like". Now through computer simulation conducted at the Institute for Advanced Computational Science (IACS) at Stony Brook University, researchers can illustrate that the structure and dynamics of hydrogen bonding in liquid water is more similar to ice than previously thought. The finding, published in Nature Communications, changes the common understanding of the molecular nature of water and has relevance to many fields, such as climate science and molecular biophysics, and technologies such as desalinization and water-based energy production.

In the paper, "The hydrogen-bond network of water supports propagating optical phonon-like modes," lead author Daniel C. Elton, a PhD candidate, and Marivi Fernandez-Serra, PhD, Associate Professor, in the Department of Physics and Astronomy and IACS, show that propagating vibrations or phonons can exist in water, just as in ice. By centering on water's unique hydrogen bond network, they routinely demonstrated that optical phonon-like modes can propagate the hydrogen bond network, just as in ice. Unlike in ice, however, hydrogen bonds in water are constantly being broken and reformed, so the phonons only last for about one trillionth of a second yet can travel over long distances up to two nanometers.

See more here.


Links to all "What's new" sections: 2012, 2013, 2014, 2015, 2016, 2017 and the latest.


Facebook   Linkedin   Address:
Department of Physics and Astronomy
Stony Brook University
Stony Brook, NY 11794-3800
Phone: (631) 632 8100
Fax: (631) 632 8176
WEB page maintained by
Maria Sukhanova
Unless otherwise noted, all content © Department of Physics and Astronomy, Stony Brook University.