2016 Nobel Prize in Physics


The 2016 Nobel Prize in Physics "for theoretical discoveries of topological phase transitions and topological phases of matter" was awarded to David J. Thouless (University of Washington), F. Duncan M. Haldane (Princeton University), and J. Michael Kosterlitz (Brown University).
The use of topology in condensed matter physics goes back to studies of topological defects (vortices) in superfluid helium and solitons in polyacetylene in the seventies. The field boomed in the eighties after the discovery of Quantum Hall Effect by von Klitzing in 1980. By now the field of topological phases of matter is well established and is developing very quickly. This year's Nobel Prize recognizes major achievements and the importance of this field in modern physics.
Research on topological phases of matter is represented in the Department by Lukasz Fidkowski, TzuChieh Wei and Alexander Abanov. One of the distinguishing features of studies in topological phases of matter is the constant collaboration of physicists representing very different disciplines such as condensed matter proper, nuclear theory, string theory, quantum information research, and mathematical physics. All these directions are well represented in the Department of Physics and Astronomy at Stony Brook University. The active research inspired by 2016 Nobel Prize winners at the Department is being done on geometry of Quantum Hall states, classification of topological phases of matter, transport in Weyl semimetals, entanglement and quantum computation, matrix product states, topological effects in QCD, and holographic approach to condensed matter physics as well as experimental studies of graphene and cold atoms.
See more about Nobel Prize here.

20161010

Links to all "What's new" sections:
2012,
2013,
2014,
2015,
2016,
2017
and the latest.